1. So een rechte linie, na begeeren gedeelt is, dan zijn de rechthoucken der selve, ende elcks een der deelen, t'saemen gelijck 'tquadraet der gantscher linie.

    Dese verschilt weynich met de voorgaende.

  2. So een rechte linie na ghevallen (in twee deelen) gedeelt wert, dan is den rechthouck der gantsche, en een der deelen, ghelijck den rechthouck der deelen, met 'tquadraet van't eerste deel.

    Exempel zy de linie 8, ghedeelt in 5 en 3, den recthouck der gantsche 8 en eerste deel 5, is 40, ghelijck den rechthouck 15, (der deelen 5 en 3) en quadraet 25 des eersten deels 5.

  3. So een rechte linie na gevallen ghedeelt wert in twee deelen, dan zijn de quadraten der deelen, met twemael den rechthouck der deelen, t'saemen, ghelijck 'tquadraet der linie.

    Exempel zy de linie 5, ghedeelt in 3 en 2 deser quadraten 9 en 4, met tweemael den rechthouck van 3 en 2, als

12,t'sae-